Step of Proof: can-apply-fun-exp-add-iff
11,40
postcript
pdf
Inference at
*
2
I
of proof for Lemma
can-apply-fun-exp-add-iff
:
1.
A
: Type
2.
n
:
3.
m
:
4.
f
:
A
(
A
+ Top)
5.
x
:
A
6. (
can-apply(
f
^
m
;
x
)) & (
can-apply(
f
^
n
;do-apply(
f
^
m
;
x
)))
can-apply(
f
^
n
+
m
;
x
)
latex
by
InteriorProof
((RWO "p-fun-exp-add" 0)
CollapseTHENA (Auto
))
latex
Co
1
:
Co1:
can-apply(
f
^
n
o
f
^
m
;
x
)
Co
.
Definitions
P
Q
,
,
T
,
suptype(
S
;
T
)
,
P
Q
,
P
Q
,
S
T
,
x
:
A
.
B
(
x
)
,
Void
,
x
:
A
.
B
(
x
)
,
Top
,
left
+
right
,
True
,
t
T
,
P
&
Q
,
x
:
A
B
(
x
)
,
n
+
m
,
can-apply(
f
;
x
)
,
f
o
g
,
f
^
n
,
b
,
x
:
A
B
(
x
)
,
,
s
=
t
,
,
Type
Lemmas
iff
wf
,
rev
implies
wf
,
assert
wf
,
bool
wf
,
can-apply
wf
,
squash
wf
,
true
wf
,
p-fun-exp-add
,
member
wf
,
top
wf
origin